Министерство образования и науки Самарской области государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа №2 «Образовательный центр» с. Кинель-Черкассы муниципального района Кинель-Черкасский Самарской области СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель-Черкассы

Принята на заседании методического совета СП СЮТ « *O1*» *a во устиа*2023г., протокол № 3

«Утверждаю» Заведующий СП СЮТ ГБОУ СОШ №2 «ОН» с. К-Черкассы Кирин П.Ю.

дополнительная общеобразовательная общеобразовательная общеразвивающая программа технической направленности «Наземная и воздушная робототехника»

Возраст обучающихся - 13-17 лет (все категории) Срок реализации - 1 год

> Разработчик: Русовский Константин Сергеевич, педагог дополнительного образования

с. Кинель-Черкассы, 2023 год

Оглавление

Пояснительная записка	3
Учебно-тематический план	8
Обеспечение дополнительной общеобразовательной программы	14
Список литературы	16
Приложение «Календарно-тематический план»	18

Краткая аннотация

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Наземная и воздушная робототехника» (далее - Программа) включает в себя 3 тематических модуля. Программа направлена на овладение начальными знаниями и умениями в области образовательной робототехники и БПЛА. Изучая программу, обучающиеся приобретут навыки конструирования с использованием специальных робототехнических учебных наборов, и наборов БПЛА, и начального (базового) программирования в графической среде.

Данная программа разработана с учётом интересов конкретной целевой аудитории обучающихся среднего и старшего школьного возраста и представляет собой набор учебных тем, необходимых детям при формировании инженерного (технического) мышления.

1. Пояснительная записка

Робототехнику и БПЛА относят к наиболее перспективным направлениям в области информационных технологий, так как развитие современных отраслей производств, невозможно без использования роботизированных систем и БПЛА.

Безусловно, назревает логичный вопрос, где же брать специалистов для работы в области робототехники. Вследствие этого встают новые задачи перед современной системой образования.

Подходящим решением, в этом смысле является обучение детей робототехнике и БПЛА в рамках дополнительного образования. Так как основная задача данного вида образования - это всестороннее удовлетворение потребностей человека в интеллектуальном, духовно-нравственном, физическом и профессиональном совершенствовании, сущностью которого является мотивированное образование, позволяющее приобрести устойчивую потребность в познании и творчестве, максимально реализовать себя, самоопределиться профессионально и личностно.

Направленность дополнительной общеобразовательной общеразвивающей программы «Наземная и воздушная робототехника» - *техническая*.

Программа направлена на создание роботизированных систем различной степени сложности с развитием навыков программирования и конструирования с помощью аппаратно-программных средств на базе Arduino. Для БПЛА используются наборы kit – дрон и симуляторы полетов БПЛА.

Введение дополнительной общеобразовательной программы «Наземная и воздушная робототехника» меняет картину восприятия обучающимися технических дисциплин, переводя их из разряда умозрительных в разряд прикладных. Применение на практике теоретических знаний, полученных на уроках математики, физики и информатики ведет к более глубокому пониманию основ, закрепляет полученные навыки, формируя образова-

ние в его наилучшем смысле. И, с другой стороны, игры в роботы, в которых заблаговременно узнаются основные принципы расчетов простейших механических систем и алгоритмы их автоматического функционирования под управлением программируемых контроллеров, послужат хорошей почвой для последующего освоения сложного теоретического материала на уроках в школе.

Новые принципы решения актуальных задач человечества с помощью роботов и робототехнических систем, усвоенные в школьном возрасте, ко времени окончания вуза и начала работы по специальности отзовутся в принципиально новом подходе к реальным задачам. Занимаясь с обучающимися, в объединениях по образовательной робототехнике, мы подготовим специалистов нового склада, способных к совершению инновационного прорыва в современной науке и технике.

Актуальность дополнительной программы обусловлена социальным заказом общества на технически грамотных специалистов в области робототехники и воздушной робототехники. Современные тенденции развития роботизированных комплексов в авиации получили реализацию в виде беспилотных авиационных систем.

Новизна образовательной программы заключается в том, она составлена с учетом приоритетов в дополнительном образовании в Самарской области, направленных на развитие технического творчества и интегрирует в себе достижения современных и инновационных направлений в наземной и воздушной робототехнике.

Отличительной особенностью программы является построение сопутствующих межпредметных связей со школьными предметами. То есть некоторые темы занятий могут перекликаться с темами школьных уроков, что в конечном итоге приведет ребенка к более лучшему усвоению данных тем.

Программа подразумевает участие ребенка в научной и исследовательских деятельностях, что положительно сказывается на развитии ораторских качеств, навыков выступления перед аудиторией и умений правильно находить ответы на поставленные вопросы. А модульность программы позволяет начать обучение с любого модуля, тем самым давая право выбора учащемуся на какое направление рабочей программы ему стоит уделить больше внимания (конструирование, программирование или проектная деятельность).

Педагогическая целесообразность дополнительной общеобразовательной программы заключается в том, что после ее освоения обучающиеся получат знания и умения, которые позволят им понять основы устройства мобильного робота и беспилотного летательного аппарата, принципы работы всех его систем и их взаимодействия, а также управление БПЛА. Использование различных инструментов развития soft-skills у детей (игропрактика, командная работа) в сочетании с развитием у них hard-компетенций (workshop,

tutorial) позволит сформировать у ребенка целостную систему знаний, умений и навыков. Это позволяет при усвоении и закреплении конкретных знаний, выработать у обучающихся:

- качественно новые приемы работы с компьютерами, роботизированными системами, системами управления;
 - расширяет область технических знаний;
 - стимулирует интерес обучающихся к освоению новых УУД;
 - вырабатывает уверенность в собственных силах;
 - прививает инженерно технический склад ума;
- заставляет самостоятельно искать информацию для решения конкретных учебных задач;
 - развивает у обучающихся соревновательные потребности.

Всё это в свою очередь позволяет реализовать учебные цели, заявленные в данной дополнительной общеобразовательной программе.

Цель: популяризация научно-технического творчества и повышение престижа инженерных профессий среди школьников, развитие практического решения актуальных инженерно-технических задач с помощью роботов, автоматизированных систем и БПЛА, а также привитие навыков работы с техникой.

Задачи:

Образовательные:

- 1. использование современных разработок по робототехнике и БПЛА в области образования, организация на их основе активной внеурочной деятельности обучающихся;
- 2. ознакомление обучающих с набором основных технологий, используемых при создании роботизированных систем, наземной и воздушной робототехники;
 - 3. реализация межпредметных связей с информатикой, математикой физикой;
- 4. решение обучающимися набора кибернетических задач, результатом каждой из которых является работающий механизм или робот с автономным управлением.

Развивающие

- 1. развитие у обучающихся инженерно-технического мышления, навыков конструирования, программирования, математических и коммуникативных способностей;
- 2. развитие мелкой моторики, внимательности, аккуратности и изобретательности;
- 3. развитие креативного мышления и пространственного воображения обучающихся.

Воспитательные

- 1. Повышение мотивации обучающихся к изобретательству и созданию собственных роботизированных систем;
- 2. Формирование у обучающихся стремления к получению качественного законченного результата через их участие в играх, конкурсах и состязаниях роботов.
 - 3. Формирование навыков работы в группе (команде).

Возраст детей, участвующих в реализации дополнительной общеобразовательной программы «Наземная и воздушная робототехника»: 13 - 17 лет.

Возможен разновозрастный состав группы, тогда образовательный процесс осуществляется по индивидуальной образовательной траектории для обучающихся другой возрастной категории.

Группы комплектуются по **10-12 человек** в соответствии с учетом СанПиН и количеством материально - технического обеспечения.

Программа может быть скорректирована в зависимости от возраста обучающихся. Некоторые темы взаимосвязаны со школьным курсом и могут с одной стороны служить пропедевтикой, с другой стороны опираться на него.

Программа рассчитана на детей всех категорий. Программу могут осваивать дети с ограниченными возможностями здоровья такие как: слабослышащие, дети с нарушением опорнодвигательного аппарата, дети с нарушением речи).

Сроки реализации программы:

Программа рассчитана на 1 год обучения:

1 год обучения - 108 учебных часов (3 часа в неделю).

Обучающиеся проходят курс конструирования, построения механизмов с использованием моторов и датчиков, а также знакомятся с основами программирования контроллера учебного набора. Далее закрепляют полученные знания и умения с помощью учебно-тематических состязаний и игр. Заключительным этапом курса является проектная деятельность.

Формы обучения: очная, при необходимости, с возможностью применения дистанционных технологий и/или электронного обучения.

Формы занятий:

- лекция;
- занятие-соревнование;
- практическая работа;
- защита проектов.

Формы организации деятельности:

Организация деятельности осуществляется по группам. Но при выполнении проектов обучающиеся могут работать индивидуально.

Режим занятий

Занятия проходят 1 раз в неделю. Трехчасовое занятие по 45 минут с перерывами по 10 минут).

Это позволяет обучающимся полноценно выполнять задания по программированию и конструированию роботов и БПЛА.

Планируемые результаты

Личностные:

- развитие любознательности, настойчивости и целеустремленности;
- наличие заинтересованности в создании каких-либо устройств, помогающих в жизни человеку;
 - начальные навыки инженерного (технического) подхода к решению задач;
- развитие бережного отношения к технике, высокотехнологичным устройствам и системам.

Метапредметные:

Познавательные:

- работать с литературой, с журналами, с каталогами и Интернет ресурсами (изучать и обрабатывать необходимую информацию);
- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применение полученных знания, приемов и опыта конструирования с использованием специальных элементов и т.д.);

Регулятивные:

- идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;

Коммуникативные:

- уметь работать в команде и малых коллективах;
- проявлять уважение как к сверстникам, так и ко взрослым, уважать мнение и интересы других людей;
- уметь представить результат своей работы, вести конструктивный и аргументированный диалог по теме и рассматриваемой проблеме.

Критерии оценки знаний, умений и навыков при освоении программы

При реализации дополнительной общеобразовательной программы «Наземная и воздушная робототехника» используются следующие методы определения результативно-

сти:

- при изучении нового материала:
- педагогическое наблюдение;
- анализ активности обучающихся на занятиях;
- различные опросы;
- оценка правильности использования компонентов конструктора и инструментов.
- при закреплении материала и оценивания практической работы обучающихся:
- подведение итогов участия в мероприятиях (соревнованиях, фестивалях и конференциях);
 - проведение тематических состязаний в рамках учебного занятия;
 - педагогический анализ результатов защиты проектов;
 - рейтинг обучающихся (за полугодие и год).

Формы подведения итогов

В течение учебного года организуются различные формы подведения итогов:

• по окончанию изучения разделов программы - тематические соревнования роботов и БПЛА;

Кроме того, полученные знания и навыки проверяются на открытых конференциях и состязаниях различного уровня, куда направляются наиболее успешные учащиеся.

2. Учебный план

Таблица 1.

No	Наименование модуля	Количество часов		
п/п		Всего	Теория	Практика
1.	Наземная робототехника.	37	10	27
2.	Программирование роботизированных систем.	31	6	25
3.	Воздушная робототехника	40	8	32
	Итого	108	24	84

Модуль 1. «Наземная робототехника»

Цель: развитие навыков конструирования и программирования с помощью образовательного конструктора.

Задачи:

Обучающие:

- формирование знаний из чего состоит мобильный робот, изучение принципа работы, сборки робота.

- актуализация знаний о сборке различных роботом и методов их управления.

Развивающие:

- приобретение навыков создания двух(четырех)моторных тележек с дальнейшим программированием.

Воспитательные:

- воспитывать чувство бережного отношения к используемому оборудованию;
 - формирование уважения к педагогу и сверстникам.

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: робототехника, информатика, кибернетика, мотор, датчик;
- связь робототехники с такими предметами как: информатика, математика, физика.

Обучающийся должен уметь:

- строить двухмоторные и четырехмоторные тележки, строить простые используя среду программирования контроллера;

Обучающийся должен приобрести навык:

- сборки и программирование простых тележек;
- начального построения алгоритмов.

Учебно-тематический план модуля «Наземная робототехника»

Таблица 2.

No	Название раздела, те-	Количество часов		о часов	Формы обучения/аттестации/ кон-
п/п	мы модуль	Всего Теория Практика		Практика	троля
1	Правила техники без-	2	1	1	Педагогические наблюдения, поста-
	опасности.				новка проблемы, тематические со-
					стязания.
2		3	1	2	-//-
	Информатика, киберне-				
	тика, робототехника.				
3	Компоненты мобильного	2	2	0	-//-
	робота.				
4	Сборка мобильного робо-	9	2	7	- //-
	та.				
5	Программирование мо-	9	2	7	-//-
	бильного робота				
6	Соревнования мобильных	12	2	10	-//-
	роботов.				
	ИТОГО	37	10	27	

Содержание программы модуля

Модуль 1. «Наземная робототехника»

Тема 1.

Теория: Понятия: Правила ТБ.

Практика: ознакомление с правилами техники безопасности при работе с образовательными конструкторами. Прохождение инструктажа по ТБ.

Тема 2.

Теория: Понятия: информатика, кибернетика, робототехника.

Практика: формирование знаний о дисциплинах: информатика, кибернетика, робототехника. Выделение между ними взаимосвязи. Изучение основоположников данных наук.

Тема 3.

Теория: Понятия: мобильный робот, способы управления и применение мобильных роботов.

Тема 4.

Теория: Понятия: рама, двигатель, управляющий контроллер, motor-shild.

Практика: сборка робота на раме 2 и 4 ведущих колеса.

Тема 5.

Теория: Понятия: управляющая программа, способы управления роботом.

Практика: программирование робота под различные задачи. Управление роботом с помощью программы и в ручном управлении.

Тема 6.

Теория: Понятия: соревнования, регламент.

Практика: проведение соревнований по регламентам «Робофест», «Робофинист» и других роботехнических соревнований.

Модуль 2. «Программирование роботизированных систем»

Цель: развитие и формирование навыков программирования и создания алгоритмов.

Задачи:

Обучающие:

- приобретение знаний об алгоритмах и функциях контроллера Arduino;

Развивающие:

- развитие умений в области программирования и создания программ для роботизированных систем;
 - формирование навыков использования различных датчиков Arduino.

Воспитательные:

- воспитание компьютерной грамотности;

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: алгоритм, виды алгоритмов;
- свойства алгоритмов и способы их построения;
- функции и принцип работы датчиков.

Обучающийся должен уметь:

- строить программы с использованием блоков: цикл, переключатель, переменные.
 - работать с датчиками и правильно выбирать область их применения.

Обучающийся должен приобрести навык:

- правильного применения задержек и таймингов;
- калибровки и настройки датчиков.

Учебно-тематический план модуля «Программирование роботизированных систем»

Таблица 3.

No	Название раздела, темы мо-	Количество часов		о часов	Формы обучения/аттестации/
п/п	дуль	Всего	Теория	Практика	контроля
1	Основы схемотехники, чтение	2	1	1	Педагогические наблюдения,
	схем.				постановка проблемы, темати-
					ческие состязания.
	Построение электрических схем	3	1	2	-//-
	Основы программирования в среде Arduino IDE	3	1	2	-//-
	Аналоговые и цифровые дат- чики	5	1	4	-//-
5		8	1	7	-//-
	Алгоритмы управления дат-				
	чиками, создание алгоритмов				
	в среде Arduino IDE.				
6	Индивидуальный творческий	10	1	9	-//-
	проект.				
	ИТОГО	31	6	25	

Содержание программы модуля

Модуль 2. «Программирование роботизированных систем»

Тема 1.

Теория: Понятия: электрическая схема.

Практика: Формирование знаний об электрических схемах. Изучение основ схемотехники.

Тема 2.

Теория: Понятия: Построение электрических схем.

Практика: приобретение навыков построения электрических схем.

Тема 3.

Теория: Понятия: Программа, интерфейс программы,

Практика:. Формирование навыков создания программ с использованием разных переменных, загрузка программ в контроллер и их запуск.

Тема 4.

Теория: Понятия: Датчик, цифровой и аналоговый датчик. Создание простых программ с использованием цифровых и аналоговых датчиков

Практика: Изучение принципа работы датчиков, показаний датчиков, единиц измерения. Практические опыты с датчиками. Создание простых программ для цифровых и аналоговых датчиков. Калибровка датчиков.

Тема 5.

Теория: Понятия: Датчик, система датчиков.

Практика: Создание роботизированных систем используя более одного датчика.

Тема 6.

Теория: Понятия: Индивидуальный творческий проект.

Практика: Приобретение навыков создания программ с использованием различных датчиков и алгоритмов работы роботизированных систем. Создание собственных прикладных проектов.

Модуль 3. «Воздушная робототехника»

Цель: Развитие навыков конструирования и программирования воздушных роботизированных систем и БПЛА.

Задачи:

Обучающие:

- Сформировать у обучающихся устойчивые знания в области моделирования и конструирования БПЛА;
 - Развить у обучающихся технологические навыки конструирования;
- Сформировать у обучающихся навыки современного организационноэкономического мышления, обеспечивающих социальную адаптацию в условиях рыночных отношений.

Развивающие:

- Поддержать самостоятельность в учебно-познавательной деятельности;
- Развить способность к самореализации и целеустремлённости;
- Сформировать техническое мышление и творческий подход к работе;

- Развить навыки научно-исследовательской, инженерно-конструкторской и проектной деятельности;
 - Расширить ассоциативные возможности мышления;

Воспитательные:

- Сформировать коммуникативную культуру, внимание, уважение к людям;
- Воспитать трудолюбие, развить трудовые умения и навыки, расширить политехнический кругозор и умение планировать работу по реализации замысла, предвидение результата и его достижение;
- Сформировать способности к продуктивному общению и сотрудничеству со сверстниками и взрослыми в процессе творческой деятельности;

Предметные ожидаемые результаты:

Обучающийся должен знать:

- Определение понятий: БПЛА, рама, двигатель, регулятор оборотов, полетный контроллер;
 - Отличие различных БПЛА;
 - Правила полетов БПЛА.

Обучающийся должен уметь:

- Конструировать БПЛА;
- Настраивать, калибровать и использовать пульт дистанционного управления для управления БПЛА.

Обучающийся должен приобрести навык:

- Целостного построения БПЛА;
- Настройка и пилотирование БПЛА;
- Командной и коллективной работы.

Учебно-тематический план модуля «Воздушная робототехника»

Таблица 4.

No	Название раздела, темы мо-	Количество часов		о часов	Формы обучения/аттестации/
п/п	дуль	Всего	Теория	Практика	контроля
	Теория мультироторных систем. Основы управления. Полёты на симуляторе.	14	2	12	Педагогические наблюдения, постановка проблемы, тематические состязания.
2	Основы 3d Моделирования	12	4	8	-//-
	Сборка и настройка квадроко- птера Учебные полеты на квадрокоптерах собственной		2	12	-//-
	ИТОГО	40	8	32	

Содержание программы модуля

Модуль 3. Задачи, выполняемые роботом

Тема 1.

Теория: Понятия: Мультироторные системы, аппаратура управления, аккумуляторы, коллекторные и безколлекторные двигатели, полеты на симуляторе.

Практика: Пайка основных систем БПЛА, полеты на симуляторе

Тема 2.

Теория: Понятия: 3D модель, 3D печать. Настройка параметров печати 3D принтера

Практика: моделирование и 3D печать компонентов

Тема 3.

Теория: Понятия: Полетный контроллер: устройство полётного контроллера, принципы его функционирования, настройка контроллера с помощью компьютера, зна-комство с программным обеспечением для настройки контроллера.

Практика: Проведение учебных полётов в зале, выполнение заданий: «взлёт/посадка», «удержание на заданной высоте», «вперед-назад», «влево-вправо», «точная посадка на удаленную точку».

3. Обеспечение дополнительной общеобразовательной программы

Методическое обеспечение

Основным методом обучения в данном курсе является *метод проектов*. Проектная деятельность в образовательной робототехнике позволяет развить конструкторские, инженерные и творческие способности учащихся. Роль педагога состоит в кратком по времени объяснении нового материала и постановке задачи, а затем консультировании учащихся в процессе конструирования и программирования.

Разработка каждого проекта реализуется в форме выполнения практической работы по сборке конструкции, программирования на компьютере с последующим представлением и защитой на творческих и интеллектуальных конкурсах и соревнованиях разного уровня.

Формы организации учебных занятий

- практикум;
- урок-консультация;
- урок-игра;
- урок-соревнование;
- урок проверки и коррекции знаний и умений.

Педагогические приемы

- «мозговой штурм»;
- творческий поиск;
- анализ объектов и признаков.

Методы обучения

Познавательный (восприятие, осмысление и запоминание обучающимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов);

Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей);

Метод проблемного обучения (используется для постановки проблемы перед обучающимися с целью нахождения наиболее рационального способа ее решения);

Групповая работа (используется при совместной сборке моделей, а также при разработке проектов).

Применяемые дидактические принципы

- принцип связи теории с практикой;
- принцип последовательности, систематичности;
- принцип наглядности;
- принцип активности обучаемых.

Материально-техническое оснащение программы

Для проведения теоретических занятий необходимы:

- учебный кабинет;
- персональный компьютер;
- доска.

Для практических занятий необходимы:

- 1. Ноутбук 10 шт.;
- 2. Haбop UNO R3 starter kit 10 шт.;
- 3. Проектор—1 шт.;
- 4. Шасси 2-х и 4-х колесное для робота 2WD и 4WDx2L 10 шт.;
- 5. Аккумуляторы типа LiPo 10 шт.;
- 6. Набор датчиков Arduino 10 шт.;
- 7. 3D принтер 1 шт.;
- 8. Система лазерной гравировки 1 шт.;
- 9. Набор ручного инструмента 1 шт.
- 10. Паяльная станция, флюс, припой 4 шт.;
- 11. Среда программирования Arduino IDE 10 шт.;
- 12. Пакет «Компас3d» для обучения моделированию 10 шт.

Для выездных мероприятий:

- Ноутбук.
- Аккумуляторы и зарядные устройства.

Транспортировочные контейнеры.

4. Список литературы

- 1. Белинская Ю.С. Реализация типовых маневров четырехвинтового вертолета. Молодежный научно-технический вестник. МГТУ им. Н.Э. Баумана. Электрон. журн. 2013. №4. Режим доступа: http://sntbul.bmstu.ru/doc/551872.html (дата обращения 01.09.2023).
- 2. Гурьянов А. Е. Моделирование управления квадрокоптером Инженерный вестник. МГТУ им. Н.Э. Баумана. Электрон. журн. 2014 №8 Режим доступа: http://engbul.bmstu.ru/doc/723331.html (дата обращения 01.09.2023).
- 3. Ефимов. Е. Программируем квадрокоптер на Arduino: Режим доступа: http://habrahabr.ru/post/227425/ (дата обращения 01.09.2023).
- 4. Институт транспорта и связи. Основы аэродинамики и динамики полета. Рига, 2010. Режим доступа: http://www.reaa.ru/yabbfilesB/Attachments/Osnovy_ajerodtnamiki_Riga.pdf (дата обращения 01.09.2023)
- 5. Канатников А.Н., Крищенко А.П., Ткачев С.Б. Допустимые пространственные траекории беспилотного летательного аппарата в вертикальной плоскости.
- 6. Мартынов А.К. Экспериментальная аэродинамика. М.: Государственное издательство оборонной промышленности, 1950. 479 с. 13. Мирошник И.В. Теория автоматического управления. Линейные системы. СПб: Питер, 2005. 337
- 7. Наука и образование. МГТУ им. Н.Э. Баумана. Электрон. журн. 2012. №3. Режим доступа: http://technomag.bmstu.ru/doc/367724.html (дата обращения 01.09.2023).
- 8. Редакция Tom's Hardware Guide. FPV- мультикоптеры: обзор технологии и железа. 25 июня 2014. Режим доступа: http://www.thg.ru/consumer/obzor fpv multicopterov/print.html (дата обращения 01.09.2023)
- 9. Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center, Moffett Field, California. P. 21. Режим доступа: http://www.aviationsystemsdivision.arc.nasa.gov/publications/hitl/rtsim/Toms.pdf (дата обращения 01.09.2023
- 10. Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25,

- 2007. Pp. 225-229. 11. Madani T., Benallegue A. Backstepping control for a quadrotor helicopter. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006. Pp. 3255-3260.
- 11. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th International Conference on Recent Advances in Space Technologies, 2009. Pp. 722-727. 4. Luukkonen T. Modelling and Control of Quadcopter. School of Science, Espoo, August 22, 2011. P. 26. Режим доступа: http://sal.aalto.fi/publications/pdf files/eluu11_public.pdf (дата обращения 01.09.2023).
- 12. LIPO SAFETY AND MANAGEMENT: Режим доступа: http://aerobot.com.au/support/training/lipo-safety (Дата обращения 01.09.2023)
- 13. Murray R.M., Li Z, Sastry S.S. A Mathematical Introduction to Robotic Manipulation. SRC Press, 1994. P. 474
- 14. Zhao W., Hiong Go T. Quadcopter formation flight control combining MPC and robust feedback linearization. Journal of the Franklin Institute. Vol.351, Issue 3, March 2014. Pp. 1335-1355. DOI: 10.1016/j.jfranklin.2013.10.021
 - 15. Лекции от «Коптер-экспресс» https://youtu.be/GtwG5ajQJvA?t=1344

Календарно-тематический план

			Turicit	царно-тематический п	· 1 · · · · · · · · · · · · · · · · · ·	Г
№ п/п	Дата, время	Тема занятия	Количество часов	Форма проведения за-	Форма контроля	Место проведения
11/11	Γ -					<u> </u>
			Модуль 1	. «Наземная робототех	кника»	
1		Тема №1. Правила техники	2	Рассказ, беседа, прак-	Опрос, постановка проблемы.	
		безопасности.		тическое обучение		ГБОУ СОШ № 2
						«ОЦ» с. Кинель-
						Черкассы
2		Тема №2. Информатика, кибер-	3	Рассказ, беседа, прак-		ГБОУ СОШ № 2
		нетика, робототехника.		тическое обучение	Педагогические наблюдения, по-	«ОЦ» с. Кинель-
					становка проблемы.	Черкассы
3		Тема №3. Компоненты мобиль-	2	Рассказ, беседа, прак-		ГБОУ СОШ № 2
		ного робота		тическое обучение		«ОЦ» с. Кинель-
					Педагогические наблюдения, постановка проблемы	Черкассы
4			9	Рассказ, беседа, прак-	Педагогические наблюдения, по-	ГБОУ СОШ № 2
4		Tama Mad Chapra wahum wara	9		становка проблемы	«ОЦ» с. Кинель-
		Тема №4 . Сборка мобильного робота.		тическое обучение	становка проолемы	Черкассы
5		p0001a.	9			ГБОУ СОШ № 2
)			9			«ОЦ» с. Кинель-
		Тема №5. Программирование		Рассказ, беседа, прак-		Черкассы
		мобильного робота		тическое обучение	Опрос, постановка проблемы.	1
6			12			ГБОУ СОШ № 2
		Тема №6. Соревнования мо-		Рассказ, беседа, прак-	Опрос, постановка проблемы, те-	«ОЦ» с. Кинель-
		бильных роботов.		тическое обучение	матические состязания	Черкассы
		Модули	ь 2. «Програм	мирование роботизир	ованных систем»	,
1		Тема №1. Основы схемотехни-	2			ГБОУ СОШ № 2
		ки, чтение схем.	_	Рассказ, беседа, прак-		«ОЦ» с. Кинель-
		<u> </u>		· · · · · · · · · · · · · · · · · · ·	Опрос, постановка проблемы	Черкассы
2			3		F ,	ГБОУ СОШ № 2
		Тема №2. Построение электри-		Рассказ, бесела прак-	Педагогические наблюдения, по-	
		ческих схем			становка проблемы	Черкассы
		10011111 0110111		in iconce coj icime	Tallo Dita iipo otto iibi	1

3		3			ГБОУ СОШ № 2
	Тема №3. Основы программи-		Рассказ, беседа, прак-	Педагогические наблюдения, по-	«ОЦ» с. Кинель-
	рования в среде Arduino IDE			становка проблемы	Черкассы
4		5			ГБОУ СОШ № 2
	Тема №4. Аналоговые и циф-		Рассказ, беседа, прак-	Педагогические наблюдения, по-	«ОЦ» с. Кинель-
	ровые датчики			становка проблемы	Черкассы
5	Тема №5. Алгоритмы управле-	8			ГБОУ СОШ № 2
	ния датчиками, создание алго-		Рассказ, беседа, прак-	Педагогические наблюдения, по-	«ОЦ» с. Кинель-
	ритмов в среде Arduino IDE.			становка проблемы	Черкассы
6		10			ГБОУ СОШ № 2
	Тема №6. Индивидуальный		Рассказ, беседа, прак-	Педагогические наблюдения, по-	«ОЦ» с. Кинель-
	творческий проект.		тическое обучение		Черкассы
		Модуль 3.	«Воздушная робототе	хника»	
1	Тема №1. Теория мультиротор-	14			ГБОУ СОШ № 2
	ных систем. Основы управле-		Рассказ, беседа, прак-		«ОЦ» с. Кинель-
	ния. Полёты на симуляторе.			Опрос, постановка проблемы	Черкассы
2		12			ГБОУ СОШ № 2
	Тема №2. Основы 3d Модели-		Рассказ бесела прак-	Педагогические наблюдения, по-	«ОЦ» с. Кинель-
	рования		, , ,	становка проблемы	Черкассы
3		14			ГБОУ СОШ № 2
	Тема №3. Сборка и настройка				«ОЦ» с. Кинель-
	квадрокоптера Учебные полеты		D C		Черкассы
	на квадрокоптерах собственной		, · · · · · · · · · · · · · · · · · · ·	педагогические наолюдения, по-	
	сборки.		тическое обучение	становка проблемы	