Министерство образования и науки Самарской области Государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа №2 «Образовательный центр» с. Кинель-Черкассы муниципального района Кинель-Черкасский Самарской области. СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель-Черкассы

«Утверждаю» «Утве

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Электроник»

«Продвинутый уровень»

Возраст обучающихся: 10 - 15 лет Срок реализации: 1 год

Разработчик: Мемиков Илья Сергеевич, педагог дополнительного образования

с. Кинель-Черкассы, 2023 год

Оглавление

1.	Пояснительная записка	3
2.	Учебный план	9
3.	Обеспечение дополнительной общеобразовательной программы	17
4.	Список литературы	19
5.	Приложение «Календарно-тематический план»	20

Краткая аннотация

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Электроник» (далее – Программа) включает в себя 4 тематических модуля. Программа направлена на овладение знаниями и умениями в области образовательной робототехники. Изучая программу, учащиеся приобретут навыки создания робототехнических систем (устройств) с использованием специальных учебных наборов и программирования в среде разработки.

Данная программа разработана с учётом интересов конкретной целевой аудитории, обучающихся среднего школьного возраста, и представляет собой набор учебных тем, необходимых детям при формировании навыков для создания различных программ и алгоритмов, и использования их в созданных устройствах.

1. Пояснительная записка

Образовательная робототехника — это новое междисциплинарное направление обучения школьников, интегрирующее знания о физике, мехатронике, технологии, математике, кибернетике и ИКТ, позволяющее вовлечь в процесс инновационного научнотехнического творчества учащихся разного возраста.

Робототехнику относят к наиболее перспективным направлениям в области информационных технологий, так как развитие современных отраслей производств, невозможно без использования роботизированных систем.

Безусловно, назревает логичный вопрос, где же брать специалистов для работы в области робототехники. Вследствие этого встают новые задачи перед современной системой образования.

Подходящим решением, в этом смысле является обучение детей робототехнике в рамках дополнительного образования. Так как основная задача данного вида образования — это всестороннее удовлетворение потребностей человека в интеллектуальном, духовнонравственном, физическом и профессиональном совершенствовании. Сущностью, которого является, мотивированное образование, позволяющее приобрести устойчивую потребность в познании и творчестве, максимально реализовать себя, самоопределиться профессионально и личностно.

Направленность дополнительной общеобразовательной общеразвивающей программы «Электроник» - *техническая*, направлена на создание роботизированных систем различной степени сложности с развитием навыков программирования и конструирования с помощью аппаратно-программных средств на базе Lego Mindstorms EV3 и Arduino UNO.

Введение дополнительной общеобразовательной программы «Электроник» изменит картину восприятия обучающимися технических дисциплин, переводя их из разряда

умозрительных в разряд прикладных. Применение на практике теоретических знаний, полученных на математике, физике и информатике ведет к более глубокому пониманию основ, закрепляет полученные навыки, формируя образование в его наилучшем смысле. И с другой стороны, игры в роботы, в которых заблаговременно узнаются основные принципы расчетов простейших механических систем и алгоритмы их автоматического функционирования под управлением программируемых контроллеров, послужат хорошей почвой для последующего освоения сложного теоретического материала на уроках в школе.

Новые принципы решения актуальных задач человечества с помощью роботов и робототехнических систем, усвоенные в школьном возрасте, ко времени окончания вуза и начала работы по специальности отзовутся в принципиально новом подходе к реальным задачам. Занимаясь с обучающимися, в объединениях по образовательной робототехнике, мы подготовим специалистов нового склада, способных к совершению инновационного прорыва в современной науке и технике.

Актуальность дополнительной общеобразовательной программы «Электроник» заключается в том, что в процессе обучения по данной программе у обучающихся:

- закрепляются УУД, освоенные в школе через прикладную деятельность;
- прививается интерес к инженерно-техническим специальностям;
- развивается исследовательская деятельность;
- через игровые формы формируется новые принципы в решении актуальных программно конструкторских задач;
- прививаются начальные навыки конструирования и автоматизированного управления робототехническими системами.

Новизна программы заключается в том, что она составлена с учетом приоритетов в дополнительном образовании в Самарской области, направленных на развитие технического творчества, вовлечения детей в конструкторскую, исследовательскую, поисковую деятельность, в том числе робототехники, а также в модульном подходе организации образовательного процесса, который позволяет начать обучение с любого модуля, тем самым давая право выбора учащемуся на какое направление рабочей программы ему стоит уделить больше внимания (конструирование, программирование или проектная деятельность).

Отличительной особенностью программы является построение сопутствующих межпредметных связей со школьными предметами. То есть некоторые темы занятий могут перекликаться с темами школьных уроков, что в конечном итоге приведет ребенка к более лучшему усвоению данных тем.

Программа подразумевает участие ребенка в научной и исследовательских деятельностях, что положительно сказывается на развитии ораторских качеств, навыков выступления перед аудиторией и умений правильно находить ответы на поставленные вопросы.

Педагогическая целесообразность дополнительной общеобразовательной программы «Электроник» заключается в использовании педагогом различных форм и методов обучения и контроля (постановка проблемы, построение логической цепочки из правильных ответов, технические диктанты, решение «производственных» ситуаций, «найди ошибку» и т.д.) с использованием технических средств обучения. Это позволяет при усвоении и закреплении конкретных знаний, выработать у обучающихся:

- качественно новые приемы работы с компьютерами, роботизированными системами, системами управления;
 - расширяет область технических знаний;
 - стимулирует интерес обучающихся к освоению новых УУД;
 - вырабатывает уверенность в собственных силах;
 - прививает инженерно технический склад ума;
- заставляет самостоятельно искать информацию для решения конкретных учебных задач;
 - развивает у обучающихся соревновательные потребности.

Всё это в свою очередь позволяет реализовать учебные цели, заявленные в данной дополнительной общеобразовательной программе.

Построение образовательного процесса осуществляется с помощью учебных комплектов Lego Mindstorms EV3 и Arduino UNO, через развитие у учащихся научнотехнического, инженерно – конструкторского и творческого мышления.

Цель: популяризация научно-технического творчества и повышение престижа инженерных профессий среди школьников, развитие практического решения актуальных инженерно-технических задач с помощью роботов и автоматизированных систем, а также привитие навыков работы с техникой.

Задачи:

Образовательные:

- 1. Использование современных разработок по робототехнике в области образования, организация на их основе активной внеурочной деятельности обучающихся;
- 2. ознакомление обучающих с набором основных технологий, используемых при создании роботизированных систем;
- 3. реализация межпредметных связей с информатикой, математикой физикой;

4. решение обучающимися набора кибернетических задач, результатом каждой из которых является работающий механизм или робот с автономным управлением.

Развивающие

- 1. развитие у обучающихся инженерно- технического мышления, навыков конструирования, программирования и математических способностей;
- 2. развитие мелкой моторики, внимательности, аккуратности и изобретательности;
- 3. развитие креативного мышления и пространственного воображения обучающихся.

Воспитательные

- 1. Повышение мотивации обучающихся к изобретательству и созданию собственных роботизированных систем;
- 2. Формирование у обучающихся стремления к получению качественного законченного результата через их участие в играх, конкурсах и состязаниях роботов.
- 3. Формирование навыков работы в группе (команде).

Возраст детей, участвующих в реализации дополнительной общеобразовательной программы «Электроник»:

- 10-15 лет.

Возможен разновозрастный состав группы, тогда образовательный процесс осуществляется по индивидуальной образовательной траектории для обучающегося другой возрастной категории.

Группы комплектуются по **10 человек** в соответствии с учетом СанПиН и количеством материально – технического обеспечения.

Программа может быть скорректирована в зависимости от возраста обучающихся. Некоторые темы взаимосвязаны со школьным курсом и могут с одной стороны служить пропедевтикой, с другой стороны опираться на него. Например, передаточные отношения связаны с обыкновенными дробями, которые изучаются во второй половине 5 класса. Понятие скорости появляется на физике в 7 классе, но играет существенную роль в построении дифференциального регулятора.

Также программу могут осваивать дети с ограниченными возможностями здоровья такие как: слабослышащие, дети с нарушением опорно-двигательного аппарата, дети с нарушением речи).

Сроки реализации программы:

Программа рассчитана на 1 год обучения:

1 год обучения – 108 учебных часов (3 часа в неделю).

Обучающиеся проходят курс конструирования, построения механизмов с использованием моторов и датчиков, знакомятся с основами программирования контроллера учебных наборов, а также приобретают умения работать с трехмерными редакторами. Далее закрепляют полученные знания и умения с помощью учебно-тематических состязаний и игр. Заключительным этапом курса является проектная деятельность обучающихся.

Форма обучения: очная, при необходимости, с возможностью применения дистанционных технологий и/или электронного обучения

Формы организации деятельности:

Организация деятельности осуществляется по группам. Но при выполнении проектов обучающиеся могут работать индивидуально.

Формы проведения занятий:

- лекция;
- занятие-соревнование;
- практическая работа;
- защита проектов.

Режим занятий

Занятия проходят 2 раза в неделю. Двухчасовое занятие (80 минут с перерывом 10 минут) и одночасовое (40 минут).

Это позволяет обучающимся полноценно выполнять задания по программированию и конструированию роботов.

Планируемые результаты

Личностные:

- развитие любознательности, настойчивости и целеустремленности;
- наличие заинтересованности в создании каких-либо устройств, помогающих в жизни человеку;
- начальные навыки инженерного (технического) подхода к решению задач;
- развитие бережного отношения к технике, высокотехнологичным устройствам и системам.

Метапредметные:

Познавательные:

- работать с литературой, с журналами, с каталогами и Интернет ресурсами (изучать и обрабатывать необходимую информацию);
- самостоятельно решать технические задачи в процессе конструирования роботов (планирование предстоящих действий, самоконтроль, применение

- полученных знания, приемов и опыта конструирования с использованием специальных элементов и т.д.);
- уметь работать со средами разработчиков, разрабатывать программы и создавать трехмерные модели;

Регулятивные:

- идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;

Коммуникативные:

- уметь работать в команде и малых коллективах;
- проявлять уважение как к сверстникам, так и ко взрослым, уважать мнение и интересы других людей;
- уметь вести конструктивный и аргументированный диалог по теме и рассматриваемой проблеме.

Критерии оценки знаний, умений и навыков при освоении программы

При реализации дополнительной общеобразовательной программы «Электроник» используются следующие методы определения результативности:

- при изучении нового материала:
- педагогическое наблюдение;
- анализ активности обучающихся на занятиях;
- различные опросы;
- оценка правильности использования компонентов конструктора и инструментов.
 - при закреплении материала и оценивания практической работы обучающихся:
- подведение итогов участия в мероприятиях (соревнованиях, фестивалях и конференциях);
- проведение тематических состязаний в рамках учебного занятия;
- педагогический анализ результатов защиты проектов;
- рейтинг обучающихся (за полугодие и год).

Формы подведения итогов

В течение учебного года организуются различные формы подведения итогов:

• по окончанию изучения разделов программы – тематические соревнования роботов;

- по окончанию изучения программы каждого года защита творческих проектов по ключевым темам программы;
- подсчет рейтинга каждого обучающегося (за полугодие, за учебный год).

Кроме того, полученные знания и навыки проверяются на открытых конференциях и состязаниях различного уровня, куда направляются наиболее успешные учащиеся.

2. Учебный план

Таблина 1.

№	Наименование модуля	Количество часов					
п/п		Всего	Теория	Практика			
1.	Платформы Lego EV3 и Arduino UNO	35	13	22			
2.	Языки программирования для платформ Lego EV3 и Arduino	36	9	27			
3.	Трехмерное моделирование и 3D печать	19	7	12			
4.	Проектная деятельность учащихся	18	5	13			
	Итого	108	34	74			

Модуль 1. Платформы Lego EV3 и Arduino UNO

Цель: знакомство с платформами Lego EV3 и Arduino UNO, формирование знаний об основных компонентах данных систем.

Задачи:

Обучающие:

- формирование знаний о характеристиках и функциях контроллеров Lego EV3 и Arduino UNO;
- приобретений знаний о языках программирования и средах разработчиков.

Развивающие:

- приобретение умений работы с платами и их компонентами, а также изучение принципа работы различных сенсоров и сервомоторов;
- приобретение навыков создания электрических схем и начального программирования.

Воспитательные:

- воспитание чувства важности соблюдения техники безопасности при работе с электронным оборудованием;
- воспитание бережного отношения к используемому оборудованию на занятиях.

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: робототехника, платформа, программирование, среда разработки, язык программирования;

- различие графической среды разработки от текстовой;
- основные функции моторов и датчиков;

Обучающийся должен уметь:

- конструировать роботов с помощью конструктора;
- строить электрические схемы с помощью специальных комплектующих;
- использовать необходимые формулы для вычисления.

Обучающийся должен приобрести навык:

- работы в среде разработчика (Arduino IDE, Lego Education EV3);
- создания мни-проектов на базе имеющихся комплектующих.

Учебно-тематический план модуля «Платформы Lego EV3 и Arduino UNO»

Таблица 2.

№	Название раздела, темы модуль	Ко	оличество	часов	Формы обучения/аттестации/
п/п		Всего	Теория	Практика	контроля
1.	Правила техники безопасности.	2	1	1	Педагогические наблюдения, постановка проблемы, тематический «мозговой штурм».
2.	Основные компоненты Lego EV3. Контролер, моторы, датчики.	6	2	4	-//-
3.	Программное обеспечение Lego Education EV3. Создание простейших алгоритмов.	6	1	5	-//-
4.	Платформа Arduino. Основные компоненты.	3	2	1	-//-
5.	Основы электроники и схемотехники.	9	4	5	-//-
6.	Создание мини-проектов на платформе Arduino. Среда разработки Arduino IDE.	9	3	6	-//-
	ИТОГО	35	13	22	

Содержание программы модуля

Модуль 1. Платформы Lego EV3 и Arduino UNO

Тема 1.

Теория: Понятия: Правила ТБ.

Практика: Ознакомление с правилами техники безопасности при работе с конструкторами и инструментами. Прохождение инструктажа по ТБ.

Тема 2.

Теория: Понятия: датчик, мотор, контроллер, алгоритм.

Практика: Получение знаний о принципе действия моторов и датчиков входящих в учебный комплект Lego EV3. Формирование навыков конструирования. Игра: «Высокая башня».

Тема 3.

Теория: Понятия: среда программирования EV3.

Практика: Приобретение умений работы в программе Lego Mindstorms EV3, использование инструментов программы для дальнейшего использования на занятиях. Конструирование моделей с дальнейшим программированием.

Тема 4.

Теория: Понятия: платформа Arduino, макетная плата, плата-контроллер, процессор.

Практика: Получение знаний о платформе Arduino и совместимых с ней компонентов. Изучение принципа работы контроллера и линейных входов и выходов.

Тема 5.

Теория: Понятия: электричество, законы электричества, резистор, диод, конденсатор, мотор.

Практика: Приобретение начальных знаний в области электроники и схемотехники. Построение принципиальных и электрических схем. Проведение опытов с платой и ее компонентами. Построение схем в программном обеспечении «Fritzing».

Тема 6.

Теория: Понятия: среда разработки, библиотеки, компилятор, программатор.

Практика: Закрепление умений создания электрических схем. Создание простейших программ и последующая загрузка в память контроллера. Редактирование и выявление ошибок в коде программ.

Модуль 2. Языки программирования для платформ Lego EV3 и Arduino

Цели: знакомство со средами разработчиков и языками программирования, практическое применение полученных знаний при создании программ.

Задачи:

Обучающие:

- приобретение знаний о классификации и предназначении языков программирования;
- формирование знаний о преимуществах и недостатках изучаемых языков программирования.

Развивающие:

- развитие навыков работы в различных средах разработчиков;
- формирование навыков прикладного использования сред разработчиков и языков программирования.

Воспитательные:

- воспитание глубокого понимания важности изучения языков программирования;
- воспитание уважения к сверстникам и старшим.

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: алгоритм, виды алгоритмов, цикл, переменная.
- особенности языков программирования (C++, «LabView»);

Обучающийся должен уметь:

- работать с изучаемыми языками программирования, составлять коды программ;
- применять необходимые команды и алгоритмы в зависимости от данных решаемой задачи; Обучающийся должен приобрести навык:
- конструирования устройств по собственным идеям;
- программирования созданных устройств;

Учебно-тематический план модуля «Языки программирования для платформ Lego EV3 и Arduino»

Таблица 3.

1.	Языки программирования. Концепция и классификация.	3	2	1	Тестирование, педагогические наблюдения, опрос, игра «найди ошибку».
2.	Графическая среда программирования «LabView». Циклы, переключатели, переменные.	6	1	5	-//-
3.	Графическая среда программирования «Scratch for Arduino». Составление алгоритмов.	9	2	7	-//-
4.	Среда разработки Arduino IDE. Язык С/С++.Составление кода программ.	9	3	6	-//-
5.	Конструирование и программирование собственных устройств на выбранной платформе.	9	1	8	-//-
	ИТОГО	36	9	27	

Содержание программы модуля

Модуль 2. Языки программирования для платформ Lego EV3 и Arduino Tema 1.

Теория: Язык программирования, языки низкого и высокого уровня.

Практика: Формирование знаний о языках программирования. Анализ классификации языков. Установление связи между «программой» и «алгоритмом».

Тема 2.

Теория: Понятия: Программа, цикл, переменная, повтор программы.

Практика: Создание новой программы в среде EV3, формирование навыков создания повторяющихся программ с использованием разных переменных и переключателей, загрузка программ в контроллер и их запуск.

Тема 3.

Теория: Понятия: Графическая среда Scratch, скрипт, оператор, сенсор.

Практика: Приобретение умений создания кода программ в среде Scratch for Arduino. Компиляция программ в память контроллера. Устранение ошибок в коде.

Тема 4.

Теория: Понятия: Среда разработки, язык С/С++.

Практика: Приобретение знаний о среде разработки Arduino IDE. Изучение команд для составления кода в среде разработки. Анализ особенностей язык C/C++. Закрепление умений использования различных библиотек программ.

Тема 5.

Теория: Понятия: вид платформы, контроллер EV3, контроллеры Arduino UNO.

Практика: Закрепление полученных знаний и умений, приобретенных во время изучения модуля. Самостоятельный выбор платформы, дальнейшее конструирование и программирование собственного простого устройства полезного в человеческом обиходе. Оценка возможностей каждой платформы. Выявление достоинств и недостатков каждой.

Модуль 3. Трехмерное моделирование и 3D печать

Цели: знакомство с трехмерным моделированием и приобретение навыков построения моделей с дальнейшей распечаткой.

Задачи:

Обучающие:

- изучение видов графики и пространств, формирование знаний о CAD системах;
- формирование знаний об устройстве и принципе работы 3D принтера.

Развивающие:

- приобретение умений работы с векторной трехмерной графикой в различных программах для моделирования.
- развитие навыков работы с 3D-принтером и построения трехмерных моделей.

Воспитательные:

- воспитание творческого подхода при создании трехмерных моделей;
- воспитание уважительного отношения к работам сверстников, и критике.

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: растровая и векторная графика, трёхмерное пространство, изометрия, диметрия.
- отличие растровой графики от векторной;
- принцип работы векторного трехмерного редактора;

Обучающийся должен уметь:

- создавать в трехмерном редакторе геометрические примитивы;
- создавать в трехмерном редакторе простейшие модели;

Обучающийся должен приобрести навык:

- работы с различными форматами трехмерных моделей;
- работы на 3D принтере;
- творческого подхода к созданию трехмерных моделей на различную тематику.

Учебно-тематический план модуля «Трехмерное моделирование и 3D печать»

Таблина 4.

1.	Растровая и векторная графика. Трехмерное пространство.	2	1	1	Педагогические наблюдения, опрос, технический диктант, тематическая выставка моделей.
2.	Программы для трехмерного моделирования. Autodesk 123D и Tinker Cad.	3	2	1	-//-
3.	Создание геометрических примитивов.	2	1	1	-//-
4.	Создание простых моделей.	5	1	4	-//-
5.	3D-печать. Основы работы на 3D-принтере.	2	1	1	-//-
6.	Создание модели на свободную тему с последующей печатью.	5	1	4	-//-
	ИТОГО	19	7	12	

Содержание программы модуля

Модуль 3. Трехмерное моделирование и 3D-печать

Тема 1.

Теория: Понятия: Растровая графика, векторная графика, трехмерное пространство.

Практика: Освоение знаний о трехмерном пространстве и системе координат. Основные отличия растровой и векторной графики. Достоинства и недостатки. Сравнение изображений с разным видом графики.

Тема 2.

Теория: Cad-графика, трехмерный редактор, расширение файла.

Практика: Анализ вида программ для создания трехмерных моделей. Изучение основных функций и инструментов редакторов на примере Autodesk 123D и Tinker Cad. Получение знаний о расширениях графических файлов.

Тема 3.

Теория: Понятия: Плоскость, плоские фигуры, объемные фигуры.

Практика: Приобретение умений по созданию в трехмерном редакторе геометрических примитивов: куб, пирамида, цилиндр. Создание моделей состоящих из нескольких геометрических примитивов.

Тема 4.

Теория: Понятия: Модель, деталь, размер, масштаб.

Практика: Закрепление навыков создания трехмерных моделей и использования инструментов изученных программ. Создание моделей определенного размера и применение масштаба.

Тема 5.

Теория: Понятия: 3D-принтер, рабочая поверхность, экструдер, пластик, виды пластика.

Практика: Приобретение умений безопасной работы на 3D-принтере. Освоение знаний о видах пластика, о принципе работы принтера. Пробная печать простых моделей. Анализ качества изготовленных моделей.

Тема 6.

Теория: Понятия: Пульт ДУ, дистанционное управление.

Практика: Закрепление полученных знаний и умений приобретенных во время изучения модуля. Самостоятельное проектирование собственной трехмерной модели, дальнейшая печать. Оценка возможностей использования 3D-печати в жизни современного человека.

Модуль 4. Проектная деятельность учащихся

Цель: закрепление навыков создания собственных проектов с последующей демонстрацией и защитой.

Задачи:

Обучающие:

- формирование знаний о понятиях «проект» и «исследование»;
- актуализация знаний о выступлениях перед аудиторией.

Развивающие:

- формирование умений постановки целей и задач создаваемых проектов и командной работы учащихся;
- развитие коммуникативных навыков и навыков выступления перед аудиторией.

Воспитательные:

- воспитание уважения к чужому труду;
- развитие коммуникативных навыков и культуры общения в малых группах.

Предметные ожидаемые результаты:

Обучающийся должен знать:

- определение понятий: творческий проект, план;
- правила построения стратегии, целей и задач разрабатываемого проекта или иследования.

Обучающийся должен уметь:

- работать в коллективе;
- распределять обязанности внутри коллектива;
- работать в программах необходимых для создания проектов.

Обучающийся должен приобрести навык:

- выступления перед аудиторией;
- уметь анализировать ситуацию и быстро находить ответы на поставленные вопросы;
- правильно демонстрировать свои разработки и проекты.

Учебно-тематический план модуля «Проектная деятельность учащихся»

Таблица 5.

1.	Выбор и утверждение темы творческого проекта.	3	2	1	Защита творческих работ, самоанализ, рейтинг обучающихся.
2.	План работы. Работа над проектом.	9	1	8	-//-
3.	Устранение недочетов, ошибок. Внесение исправлений.	3	1	2	-//-
4.	Демонстрация и представление творческих проектов.	3	1	2	-//-
	ИТОГО	18	5	13	

Содержание программы модуля

Модуль 4. Проектная деятельность учащихся

Тема 1.

Теория: Понятия: проект, цели и задачи проекта.

Практика: Формирование навыков командной творческой работы и проблемного мышления. Формулирование темы проекта с самооценкой.

Тема 2.

Теория: Понятия: план действий, планирование времени.

Практика: Самостоятельная работа учащихся с педагогическими консультациями. Закрепление навыков работы в команде.

Тема 3.

Теория: Понятия: самокритика, недочеты, программная ошибка, конструкционная ошибка

Практика: Консультация с педагогом. Самоанализ. Приобретение навыков оценки собственной леятельности.

Тема 4.

Теория: Понятия: демонстрация, функции защиты проектов.

Практика: Формирование навыков выступления перед аудиторией. Развитие дикции и ораторских качеств. Приобретение навыка по сжатию информации. Защита проектов. Рейтинг учащихся.

3. Обеспечение дополнительной общеобразовательной программы

Методическое обеспечение

Основным методом обучения в данном курсе является *метод проектов*. Проектная деятельность в образовательной робототехнике позволяет развить конструкторские, инженерные и творческие способности учащихся. Роль педагога состоит в кратком по времени объяснении нового материала и постановке задачи, а затем консультировании учащихся в процессе конструирования и программирования.

Разработка каждого проекта реализуется в форме выполнения практической работы по сборке конструкции, программирования на компьютере с последующим представлением и защитой на творческих и интеллектуальных конкурсах и соревнованиях разного уровня.

Формы организации учебных занятий

- практикум;
- урок-консультация;
- урок-игра;
- урок-соревнование;
- урок проверки и коррекции знаний и умений.

Педагогические приемы

- «мозговой штурм»;
- творческий поиск;
- анализ объектов и признаков.

Методы обучения

Познавательный (восприятие, осмысление и запоминание обучающимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов);

Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей);

Метод проблемного обучения (используется для постановки проблемы перед обучающимися с целью нахождения наиболее рационального способа ее решения);

Групповая работа (используется при совместной сборке моделей, а также при разработке проектов).

Применяемые дидактические принципы

- принцип связи теории с практикой;
- принцип последовательности, систематичности;
- принцип наглядности;
- принцип активности обучаемых.

Материально-техническое оснащение программы

Для проведения теоретических занятий необходимы:

- учебный кабинет;
- персональный компьютер;
- доска.

Для практических занятий необходимы:

- Образовательные робототехнические наборы «Arduino UNO» 5 шт.
- Персональные компьютеры -6 шт.
- Набор полей для робототехники.
- Набор запасных деталей и датчиков.
- 3D-принтеры.
- Набор инструментов.
- PLA-пластик.
- Программное обеспечение: Scratch for Windows, Lego Education EV, Arduino IDE, Компас 3D, Repeater Host.

Для выездных мероприятий:

- Ноутбук.
- Аккумуляторы и зарядные устройства.
- Транспортировочные контейнеры.

4. Список литературы

- 1. Овсяницкая, Л.Ю. Курс программирования робота EV3 в среде Lego Mindstorm EV3 [Текст] / Л.Ю. Овсяницкая, Д.Н. Овсяницкий, О.Д. Овсяницкий. М.: Издательство «Перо», 2016. 300 с. [MO1]
- 2. Момот М.В. Мобильные роботы на базе Arduino [Текст] / М. Момот под ред., Добина Г.В.– СПб.: BHV, 2017. 288 с. [MO2]
- 3. Голиков Д. Scratch для юных программистов [Текст] / Д. Голиков. СПб.: BHV, 2018. 192 с. [MO3]
- 4. Белов А.В. Программирование ARDUINO. Создаем практические устройства [Текст] / А.В. Белов. М.: Наука и техника, 2018. 272 с. [МО4]
- 5. Конасова Н.Ю. Оценка результатов дополнительного образования детей [Текст] / Н.Ю. Конасова. М.: Учитель, 2019. 118 с. [МО5]
- 6. Малыхина Л.Б. Справочник педагога дополнительного образования [Текст] / Л.Б. Малыхина М.: Учитель, 2019. 239 с. [МО6]
- 7. Матяш, Н. В. Инновационные педагогические технологии. Проектное обучение [Текст] / Н. В. Матяш. М.: Академия, 2015. 158 с. [МО7]
- 8. Ашанина Е.Н. Современные образовательные технологии [Текст] / Е. Ашанина под ред., Васина О.В. под ред., Ежов. М.: Либерея, 2018. 165 с. [МО8]

Календарно-тематический план

	Дата,	Тема занятия								
№ п/п	время		Количество	Форма	Форма	Место				
			часов	проведения	контроля	проведения				
				занятия						
	Модуль 1. «Платформы Lego EV3 и Arduino UNO»									
1	1 Тема №1. Правила техники безопасности. 2 Рассказ, беседа, Опрос, СП СЮТ ГБОУ									
				практическое	постановка	СОШ № 2 «ОЦ»				
				обучение	проблемы.	с. Кинель-				
					тематическ	Черкассы				
					ий					
					«мозговой					
					штурм».					
2		Тема №2. Основные компоненты Lego EV3.	6	Рассказ, беседа,	Педагогиче	СП СЮТ ГБОУ				
		Контролер, моторы, датчики.		практическое	ские	СОШ № 2 «ОЦ»				
				обучение	наблюдени	с. Кинель-				
					Я,	Черкассы				
					постановка					
					проблемы,					
					тематическ					
					ий					
					«мозговой					
			_		штурм».	~~ ~~~				
3		Тема №3. Программное обеспечение Lego	6	Рассказ, беседа,	Постановка	СП СЮТ ГБОУ				
		Education EV3. Создание простейших		практическое	проблемы,	СОШ № 2 «ОЦ»				
		алгоритмов.		обучение	опрос.	с. Кинель-				
						Черкассы				
4		Тема №4. Платформа Arduino. Основные	3	Рассказ, беседа,	Постановка	СП СЮТ ГБОУ				
		компоненты.		практическое	проблемы,	СОШ № 2 «ОЦ»				

			обучение	опрос.	с. Кинель- Черкассы
5	Тема №5. Основы электроники и схемотехники.	9	Рассказ, беседа, практическое обучение	Педагогиче ские наблюдени я, постановка проблемы, тематическ ий «мозговой штурм».	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель- Черкассы
6	Тема №6. Создание мини-проектов на платформе Arduino. Среда разработки Arduino IDE.	9	Рассказ, беседа, практическое обучение	Опрос, постановка проблемы, педагогиче ское наблюдени е.	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель- Черкассы
	Модуль 2. Языки программирования дл	ія платформ І	Lego EV3 и Arduiı	10	
1	Тема №1. Языки программирования. Концепция и классификация.	3	Рассказ, беседа, практическое обучение	Тестирован ие, педагогиче ские наблюдени я, опрос.	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель- Черкассы
2	Тема №2. Графическая среда программирования «LabView». Циклы, переключатели, переменные.	6	Рассказ, беседа, практическое обучение	Тестирован ие, педагогиче ские наблюдени	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель- Черкассы

3	Тема №3. Графическая среда программирования «Scratch for Arduino». Составление алгоритмов.	9	Рассказ, беседа, практическое	я, опрос, игра «найди ошибку». Тестирован ие,	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель-
			обучение	педагогиче ские наблюдени я, опрос, игра «найди ошибку».	Черкассы
4	Тема №4. Среда разработки Arduino IDE. Язык С/С++.Составление кода программ.	9	Рассказ, беседа, практическое обучение	Педагогиче ские наблюдени я, опрос.	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель- Черкассы
5	Тема №5. Конструирование и программирование собственных устройств на выбранной платформе.	9	Рассказ, беседа, практическое обучение	Тестирован ие, педагогиче ские наблюдени я, опрос.	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель- Черкассы
	Модуль 3. Трехмерное модели	ирование и 3			
1	Тема №1. Растровая и векторная графика. Трехмерное пространство.	2	Рассказ, беседа, практическое обучение	Педагогиче ские наблюдени я, опрос.	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель- Черкассы
2	Тема №2. Программы для трехмерного моделирования. Autodesk 123D и Tinker Cad.	3	Рассказ, беседа, практическое обучение	Педагогиче ские наблюдени я, опрос,	СП СЮТ ГБОУ СОШ № 2 «ОЦ» с. Кинель- Черкассы

				технически	
	T M2 G			й диктант.	OH GIOT FROM
3	Тема №3. Создание геометрических примитивов.	2	Рассказ, беседа,	Тематическ	СП СЮТ ГБОУ
			практическое	ая	СОШ № 2 «ОЦ»
			обучение	выставка	с. Кинель-
				моделей.	Черкассы
4	Тема №4. Создание простых моделей.	5	Рассказ, беседа,	Тематическ	СП СЮТ ГБОУ
			практическое	ая	СОШ № 2 «ОЦ»
			обучение	выставка	с. Кинель-
				моделей.	Черкассы
5	Тема №5. 3D-печать. Основы работы на 3D-	2	Рассказ, беседа,	Педагогиче	СП СЮТ ГБОУ
	принтере.		практическое	ские	СОШ № 2 «ОЦ»
			обучение	наблюдени	с. Кинель-
				я, опрос,	Черкассы
				технически	_
				й диктант.	
6.	Тема №6. Создание модели на свободную тему с	5	Рассказ, беседа,	Педагогиче	СП СЮТ ГБОУ
	последующей печатью.		практическое	ские	СОШ № 2 «ОЦ»
	·		обучение	наблюдени	с. Кинель-
				я, опрос,	Черкассы
				тематическ	1
				ая	
				выставка	
				моделей.	
	Модуль 4. Проектная	деятельності	ь учащихся		
1.	Тема №1. Выбор и утверждение темы	3	Рассказ, беседа,	Самоанали	СП СЮТ ГБОУ
	творческого проекта.		практическое	з, рейтинг	СОШ № 2 «ОЦ»
			обучение	обучающих	с. Кинель-
				ся.	Черкассы
2	Тема №2. План работы. Работа над проектом.	9	Рассказ, беседа,	Самоанали	СП СЮТ ГБОУ
	, , , , , , , , , , , , , , , , , , ,	-	практическое	з, рейтинг	СОШ № 2 «ОЦ»
			обучение	обучающих	с. Кинель-
			,	J	

				ся.	Черкассы
3	Тема №3. Устранение недочетов, ошибок.	6	Рассказ, беседа,	Самоанали	СП СЮТ ГБОУ
	Внесение исправлений.		практическое	з, рейтинг	СОШ № 2 «ОЦ»
			обучение	обучающих	с. Кинель-
				ся.	Черкассы
4	Тема №4. Демонстрация и представление	3	Рассказ, беседа,	Защита	СП СЮТ ГБОУ
	творческих проектов.		практическое	творческих	СОШ № 2 «ОЦ»
			обучение	работ.	с. Кинель-
					Черкассы